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<8 ps. In the C-band, a high-power variable power divider—
combiner is realized by using the construction of case 2 in Fig. 1
with the following performance: bandwidth =10 percent, inser-
tion loss < 0.6 dB, VSWR <1.25; switching time < 20 ps, peak
power = 500 kW, average power = 500 W, phase shift between
two orthogossionnal modes of the quadrupole-field section = 90°,
power division—combination ratio = 3 dB.

The above results show that experiments are in good agree-
ment with theory, and some practical devices have been con-
structed with many advantages over devices with electromagnets
and holding currents.

REFERENCES

[11 Xu Yansheng, “Miniaturized microwave ferrite latching polarizers,” Acta
Electron., vol. 7, no. 4, pp. 49-56, Dec. 1979 (in Chinese).

[2] S. A. Schelkunoff, “Generalized telegraphist’s equations for waveguides,”
Bell Syst. Tech. J., vol. 31, pp. 784-801, July 1952.

[3] P. Hlawiczka, Gyrotropic Wavegutdes. New York: Academic Press, 1981,

[4] Jiang Renepi, Wei Kezhu, and Li Shigen, “Coupling-wave theory on
latching variable polarizers,” Acta Electron. Swica, vol. 11, no. 1, p. 66,
Jan. 1983 (in Chinese).

[5]1 Wei Kezhu ez al., presented on 1985 National Microwave Conference (in
Chinese).

[6] Xu Yansheng and Jiang Zhengchang, “Dual-mode latching ferrite de-
vices,” Microwave J., vol. 29, no. 5, pp. 277-285, May 1986.

Generalized Lorentz Gauge and Boundary Conditions
in Partially Dielectric-Loaded Cylindrical Waveguide

JEONG-SIK CHOI, DUK-IN CHOI, aND SOON-CHUL YANG

Abstract —A  generalized Lorentz gauge condition for the set of
Vlasov~Maxwell equations is introduced. The condition is applied to the
free-electron-laser instability of a relativistic electron beam in a partially
dielectric-loaded waveguide. For the dielectric-loaded system with the
external wiggler magnetic field, the potential approach with the generalized
Lorentz gauge rather than the field approach is shown to be more
convenient in the self-consistent study of free-electron-laser instability.
We also derive the boundary conditions for potentials to be satisfied at the
vacuum-dielectric interface and show that they are equivalent to the B
and E, continuous conditions in the field approach. An example is
discussed to illustrate the equivalence between the two approaches of
potentials and fields. -

I. INTRODUCTION

The instabilities of, electromagnetic waves in dielectric-loaded
cylindrical waveguide have been the subject of a number of
recent investigations. [1]~[3] These works make use of the fluid
Maxwell description and neglect the radial effect of the relativis-
tic electron beam. Using the Vlasov—Maxwell scheme, Uhm and
Davidson [4], [5] investigated the properties of free-electron-laser
instability in a relativistic electron beam, which has a finite radial
profile, propagating through a cylindrical vacuum waveguide. In
their problem of the vacuum-beam boundary conditions for the
system with the external wiggler magnetic field, the perturbed
potential rather than the field was used in the self-consistent
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calculations of current and charge densities. To formulate the
problem self-consistently, the potential approach is more
convenient and is used extensively. For the problem of partially
dielectric-loaded waveguide extending the vacuum waveguide
case, the boundary conditions of potential quantities at the
vacuum-—dielectric interface are required. In this study the
boundary conditions of the scalar and vector potentials at the
vacuum-—dielectric interface in a dielectric-loaded cylindrical
waveguide are presented. In our analysis, we make use of a
generalized Lorentz gauge condition for the potentials. It is
shown that the boundary conditions on potentials are equivalent
to the boundary conditions on electromagnetic fields. In ad-
dition, we discuss characteristics of the eigenmode that propaga-
tes through a partially dielectric-loaded cylindrical waveguide
using the derived new potential boundary conditions.

II. FORMULATION

We consider a partially dielectric-loaded cylindrical waveguide
with a grounded conducting wall. The permeability of the
dielectric material differs from unity by only a few parts in 10°;
thus in the Maxwell equations the permeability is set as p=1.
The displacement vector D is related to E as D = ¢E, where € is
the dielectric constant. Cylindrical coordinates (7,4,z) are
introduced and the dielectric constant is assumed to be only a
function of the radial variable r.

In this analysis, a normal mode approach is adopted in which
all quantities are assumed to vary according to

V(x,1) =¥ (r)exp[i(10 + kz — wt)] 4]

where [/ is the azimuthal harmonic number, k is the axial

.wavenumber, w is the eigenfrequency, and \i'(r) is the ampli-

tude. The scalar potential ¢ and the vector potential A are
related to the fields B and E as

B=v x4 @)
1 94
E=-vé¢~———. 3
ve c dt )
Choosing the gauge condition
€ do
A+———=0 4
v ¢ ot )

as the generalization of the Lorentz gauge to the case with
dielectrics, the Maxwell equations for the potentials 4,, 44, 4,,
and ¢ are given as
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where

pP=ew’/t — k% 9)
A cylindrical waveguide with a dielectric material in the range
R, <r<R, and a vacuum in r < R is considered. The radial

profile of the dielectric constant is given by

1 forO<r<R,
c(r)={é

for R, <r<R,

where € is a constant lager than unity. R, is the radius of a
grounded conducting wall. The boundary conditions of potential
quantities at the vacuum—dielectric interface »= R, are investi-
gated for the cylindrical dielectric-loaded waveguide. Since the
field quantities are represented by the derivative of potentials
from (2), (3), and (4), the potentials , /f, , Aa, and A. should be
defined as the continuous functions at » = R,,. That is,

(10)

(1)

¢>, : continuous at =R .

Equation (5) is rewritten as

19 B ? ,\ iw de
( e-~+€p)¢(r)=7EA,(r). (12)

r dr

Multiplying (6) and (12) by r and integrating from R, (1- 8) to
R, (1 + &), with 6§ — 0, we obtain

B/f, 3/?, iw A
( ) “( ) =—(&-1e(R,) (13)
ar | r,a+ 8 or Jr,a-s €

J J ] "
e(—¢) a(—"’) - (e-DA(R). (19
ar Jr,a+8 \dr)r,a-8

Applying the same method to (7) and (8), we note that 34, /97

and 9A, /dr are continuous at r = R; that s,
94, 94, ,
——— and — : continuous at r = R. (15)
ar ar

It is shown that ﬁ is continuous at r = R, from (1) and (3) and
B. is continuous at = R, from (11), (15), and (2) Usmg 2, 3),
(11), and (15), the Maxwell equation of p°B, = — 4B + <2 f
frequently used as the B, continuity condition in the works where
the field rather than the potential approach is taken, is shown to
be equivalent to the equation (14) expressing the discontinuity of
ELS /or at r= S1m1lar1y, using (7)., the Maxwell equation
szg E —i® B of the E, continuity condition is equiva-
lent to the d1scont1nu1ty of 34 ,/0r, eq. (13), at r=R,,. There-
fore, we conclude that the generahzed Lorentz gauge condmon of
(4) is proper in view of the fact that the boundary conditions of
the two different approaches of field and potential are shown to
be equivalent.

As a specific example, we investigate the properties of eigen-
modes in a cylindrical dielectric-loaded waveguide with a
grounded conducting wall. At r = R, the boundary conditions of
potential quantities become

n A » 9rA,
¢(R()=A_.(Rc>=A0(R(>=[ i, ] -0 ()

where use has been made of (2), (3), (4), (7), and E (R)=
(0B /9r), _r.=0. For azimuthal symmetry (/=0), using the
boundary conditions of potential gquantities (11), (13), (14), (15),
and (16), and solving the Maxwell equations (5)—(8) represented
by the potentials, we obtain the dispersion relation of DE, =0
with the condition ¢(r) = 4, (r) = A.(r) = 0 (TE mode) or D Mo
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=0 with A;(r) = A4.(r) = 0 (TM mode), here D}, and D}, are
the dispersion functions defined as

’ 7 R( 7’ R‘ /
" k)—l J/(n)M(nR—")~J/(nR—“)M(n) (8
7.1/ w, - R( R( *_J g
! L(n)M’(nf)*L’(n )N/(n) &)
(17)
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(18)
where
n_z_é‘w_z_kZ
R?j é?
and
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For [+ 0, applying the same procedure we obtain the dispersion
relation

4

1= pet (v — &) (" - §°)
which is same as the result of the field approach [7], as well as the
properties of the eigenmodes that the axial component of the
vector potential is zero. Of course, the eigenmodes do not have
the structure of TE mode and TM mode.

In conclusion, from the generalized Lorentz gauge condition
we derive the boundary conditions of potentials at the
vacuum—dielectric interface in a partially dielectric-loaded
cylindrical waveguide. The results can be used to study the free
electron laser in a cylindrical partially dielectric-loaded waveguide
and other intense microwave generation dielectric-loaded devices
when we apply the Vlasov—Maxwell equatxons using potentials
rather than fields.
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